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ABSTRACT

The characteristic equation for a lossy three-layer ocean model is complex and

transcendental and thus requires numerous, lengthy iterations to determine its eigenvalues.

Factoring the equation, made possible by the introduction of a small error term, provides

new equations that are quickly and easily solved. The eigenvalues of the simplified

equations are examined and compared with those of the original characteristic equation for

two water/sediment/bedrock models. The first model treats all three layers as liquids which

can propagate only compressional waves. The second model represents both the sediment

and bedrock layers as elastic materials which support the propagation of shear waves in

addition to compressional waves. For the all-liquid model, the factored solutions showed

too much mode attenuation compared to the exact solutions. A different type of factor was

developed that had eigenvalues closer to the exact eigenvalues. The liquid/elastic/elastic

model factored solutions also predicted too much loss, but no correction was found.
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Chapter 1

INTRODUCTION

Normal mode theory determines exact solutions for ducted sound propagation

problems. The theory gives a characteristic equation for a given duct system.

Unfortunately, the characteristic equations which determine the eigenvalues are usually

transcendental functions that require numerical analysis and the aid of a computer to solve.

Using approximations of a characteristic equation can make finding the eigenvalues easier

and quicker.

An important duct problem is a three-layer model of the ocean. The characteristic

equation determining its eigenvalues is complex and transcendental. It can be solved

numerically using Newton's Method for nonlinear systems, but that is a time-consuming

computer process. This study describes a factoring technique for breaking the

characteristic equation into simpler equations, and compares the eigenvalues produced by

the characteristic equation and the simpler equations.

Two types of three layer models will be considered: a liquid/liquid/liquid (LLL)

model and a liquid/elastic/elastic (LEE) model. The LLL model is the simpler since only

pressure waves can propagate in liquids. The LEE treats the water as a liquid, but treats the

sediment and the bedrock as elastic media which support both pressure and shear waves.

The use for two models arises from many types of sediments and ocean bottoms.
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1.1. Definition of the Three-Layer Model

The model representing the ocean is a three-layer waveguide composed of water,

sediment, and bedrock. The water is designated as layer 1 and has constants density Pl,

sound speed cl, and wavenumber kj. Likewise, the sediment is layer 2 with p2, c2, and

k2, and the bedrock, usually basalt or granite, is layer 3 with P3, c3, and k3. The water has

depth h and the sediment has depth t. The bedrock is a halfspace. All boundary surfaces

are smooth and horizontal, and the water-air surface at z=O is a pressure release surface.

air
zf=i0

water P1  cI

9t1 3  z=h

sediment P2  C2

z h+t

bedrock P3  c3

z

Figure 1.1. The Three-Layer Ocean Model
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1.2. Development of the Characteristic Equation

The development of the characteristic equation for a general layered waveguide

begins with the wave equation's associated Helmholtz equation for the pressure of plane

waves. Pressure P is a function of both range r and depth z. The wavenumber k and

sound speed c are generally functions of z, and k(z)=o/c(z). Since the interest is in the

water layer, the equation is developed for this region.

V 2P(r,z) + kl(z) 2 P(r,z)=0 . (1.1)

The separation of variables technique can be used to get the differential equation for Z(z)

that describes the z-dependence only as in (1.2). The separation constant is denoted k.,

and is the horizontal component of the wavenumber k. The k,'s are the eigenvalues that

determine the normal modes for the waveguide. For example, in the water layer,

d2Z(z) + (k1(z)2 - k2)Z 1(z) = 0 (1.2)
dz2

The vertical component of ki will be denoted as Pq. The relationship for k and its

components is ki 2 = Ki 2+k,2 . For the models developed here, k and K will not be

functions of z, since the sound speeds are assumed to be constants.

d2ZI(z) + 2Z 1(z) -0 . (1.3)
dz

2

The solution to (1.3) is given by (1.4), where Aei r tZ represents an upward

traveling wave, and Be-i1Z represents a downward traveling wave.

Zl(z)=Aei-z + B e- iKIz (1.4)
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If the water region is divided into a lower and upper region at the depth of a source, then

two equations can be written from (1.4): one for a wave that travels upward from the

source and strikes the surface, and one that travels downward from the source and strikes

the water-sediment interface. The upraveling wave becomes a downward traveling wave

after reflecting off the surface and the down traveling wave becomes an uptraveling wave

after hitting the interface. The two equations describing this are

ZU= eic&z+9tje-ie z (1.5)

and

ZD =%1 3 eiK'(z-h)+ e-in (z-h) , (1.6)

where 911 and 9t 13 are complex reflection coefficients. To relate these two equations to

one another, their Wronskian is set equal to zero in (1.7).

WOO ZU ZD ZUZD' - ZU'ZD=o (1.7)
ZU, ZD,

After completing the necessary math, the characteristic equation is

W( 1i) = -9tlI 3e-2 iKh = 0 (1.8)

1.2.1. Making k. Complex

Now k, the horizontal component of wavenumber k, is made complex with small

imaginary part e. Allowing the wavenumber to be complex introduces a loss into the

characteristic equation.

kn =kn +ien •(1.9)
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The expression for the vertical component of the wavenumber is then

= k2 (k. +ie.)2 . (1.10)

If it is assumed that e. is very small so its squared term may be ignored, after rearranging

and using the binomial expansion, the expression for K1 becomes

K, = (k2 -k2),/2_ ike (.

The first term on the right side of (1.11) represents the real part of K', and will be denoted

as KIR. The Kc1 in the denominator of the second term on the right side of (1.11) can be

approximated as Kf so that rewriting (1.11) gives

K1 _- - k e (1.12)

Substituting (1.12) into the characteristic equation gives

1 - 9t I9t3 e-2i0h e-2k&,h/I = 0 . (1.13)

The exponential with the En in it is the loss or attenuation introduced by the complex kn.

The modes with the smallest 4's will propagate best.

1.2.2. The Magnitude and Phase of 9t,

The reflection coefficient 9I is complex and may be represented in polar form.

9t1=Ij) 4ieO' . (1.14)

The air-water interface is considered to be a near perfect pressure release boundary for all
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calculations. Therefore the value of 9t, is set equal to 0.99 and the phase 0 1 is set equal to

pi. The characteristic equation is now

I -1t I 9t13 e-i(KR+ Od e - 2k . r h/
l 

= 0 (1.15)

1.3. Solving the Exact Characteristic Equation

Before the characteristic equation can be solved, 9t13 must be known. 9113 will be

developed later, and will be a complex function of both k. and E. The characteristic

equation, once 9113 is substituted into it, can be separated into its real and imaginary parts

yielding two equations for the two unknowns, k. and E.. Newton's Method for nonlinear

systems (Burden and Faires 1985, p. 496) can be used to solve for k. and e.

Recall that for a linear system, Newton's Method is an iterative process in which

xi's are sought that satisfy

f(xi) =0 , (1.16)

xi+ = f(xi) (1.17)
f (xi)

(Kunz 1957, pp. 11), where xi is the initial guess and Xi+l becomes the new guess after

each iteration. For the two variable case, two equations are needed.

fl(ka,en) = 0 . (1.18)

f2 (ka,e) = 0 . (1.19)

The iterative equation in matrix notation is
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k ~ j -[ k n ]-
n I-on [f2 (1.20)4..l en f2 Dfh f.2 "

Defining x as in (1.21), (1.20) can be rewritten as (1.22).

x=[kn] .(1.21)6n

G(x) = x - J-(x) F(x) (1.22)

The matrix J(x) is the Jacobian matrix, and J'1 (x) is the inverse of the Jacobian. This

method usually gives quadratic convergence provided a sufficiently accurate starting value

is given and J-I(x) exists (Burden and Faires 1985, pp. 498).

1.4. The Factoring Technique

In Chapters 2 and 3, 913 will be shown to be the sum of two or more terms. For

simplicity, say 9t13 is equal to x plus y, and 9t1 and e(-21 h) are equal to unity. Then the

general form of the characteristic equation is

1-x-y=O (1.23)

If we assume that x and y are small, and that the product of the two is also small, then the

product xy can be added to the left side of (1.23). The right side is kept at zero,

introducing product error xy. The left side can be factored into (1-x)(1-y). Adding xy to

the left side and then factoring in this fashion is the factoring technique used on the

characteristic equation. Each of the factors (I-x) and (1-y) is then separated into its real

and imaginary parts. The equation from taking the imaginary part is always a function of

k. only, as will be shown later, and can be solved using Newton's linear method. The
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values of k. can then be substituted into the real part equation, which is a function of the

two variables, to find the corresponding values of e.
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Chapter 2

THE LIQUID/LIQUID/LIQUID MODEL

In the liquid/liquid/liquid (Lii) model, all three layers in the waveguide are liquids

capable of supporting the propagation of compressional waves. The reflection and

transmission coefficients needed in 9t13 in the characteristic equation must therefore be for

waves striking liquid/liquid boundaries. Shear waves cannot propagate in liquids so they

are not considered until Chanter 3.

2.1. The LLL Characteristic Equation

In order to solve the characteristic equation developed in Chapter 1 (1.8), 9t 13 must

be obtained. 9t13 is a combined reflection coefficient describing the total returned sound

from the sediment and basement. The derivation follows from Clay and Medwin (1977,

pp. 96).

2.1.1. %13 for the LLL Model

The reflection coefficient and nnsmission coefficient for two liquid layers are

9t12 =Z-I(2.1)

IZ2 +ZI
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3 1  2Z2 (2.2)
2 Z2 +Z 1 '

where the impedances, Zi and Z2, are giver in Table 2.1. The energy equation that relates

these coefficients is also listed in Table 2.1. The phase that arises from reflection off the

water-sediment interface 12 is assumed to be zero. Similarly, the equations for 323 and

.z3 and their energy relationship are in Table 2.1; 4b is also assumed zero. As shown in

Figure 2.1, the angles are measured from the horizontal, and the sediment compressional

wave path distance in between reflections or transmissions is r7.

From Figure 2.1, the total up traveling signal is the sum of an infinite number of

reflections and transmissions. Each up and each down path in the sediment has a phase

delay of 2k2sinOt or 2K2t. Assuming the incident wave has unit amplitude, the total

reflection 913 is

2
%13 = 912 + 1129t23121 e -2 'zt + S12923%21!21 e- 4 i 2t + * (2.3)

After factoring out S 12923S21 e -2ilct from all but the first term, the remaining terms in

(2.3) have the form of a geometric series (Spiegel 1968, pp. 107).

x-J -- (l-x) -  (2.4)
j=o

The complex coefficients can be replaced by their magnitudes since all of their

phases are approximately by zero. Rewriting (2.3) by summing the series gives for 9t13

913 = 9t12 + 1l2 3 2 19t23e 2  ' (2.5)
1 - 9121 9t23 e -2i,*t

The reflection coefficient is an oscillating function that depends on 2Wt. It also depends on

the frequency and angle of incidence for a given layer (Clay and Medwin 1977, pp. 67).
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Table 2.1.

Reflection and Transmission Coefficients for the LLL Model

Z = picI Z2 = P2C2 Z3 = P3C3

sin 01 sin 92 sin 03

2 + ZI 9121 = - 9t 12

923 = Z - Z29 23

31= 22 32 =- 23
2Z1

z 2 IZ Z2 + Z 1

2Energy Relationships: 9t12 + 512-21 - 1

2
9t3+32333
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9t 2 3 129t 23 3S21

02 3 1 9 23 
-1 1299 2 3 l'  3 2

5 12 323 -1129t23% 215123

Figure 2.1. Reflection and Transmission Paths for the LLL Model

For the liquid/liquid boundary case, 921- 9t12 and 512321 = 1-9t122-

Substitution into (2.5) yields

(1 - 9t12 2) %J23 e -2i,*t

913 = 9t 12 + (2.6)
1 + 912 9t23 -2i Q

2.1.2. Incorporation of Attenuation into 9t13 for LLL Model

Whenever a signal travels through the sediment it is attenuated. The values for the

sediment attenuation coefficient a2, usually given in dB/(m kHz), vary for different types

of sediments. An attenuation factor will be necessary in the same places as the sediment

phase factor in the equation for 9t3.



13

A = l 0 -(a2/Ao)(f/0ooo)r 2  (2.7)

(1- 12 2) 9t23A 2 e- 2iK2t
1 + 9 12 9 2 3 A 2 e-2iK2t (2.8)

Due to the complex kr, K2 is replaced by

R _ ikn (2.9)

Making the following simplifications transforms (2.8) into (2.12).

S1 =A (1 - 912 )9t23 . (2.10)

S2 =A2 9 12923 , (2.11)

9113 = 9t 12 + S, e-2i.t (2.12)
1 + S 2 e-2it e-2k.F(2/.2

2.1.3. Substitution of 9113 into the LLL Characteristic Equation

Before 9t13 can be substituted into the characteristic equation, the second term is

multiplied by the complex conjugate of its denominator.

9t13 = 9t12 + SIE 2 (e - 21i t + S2E2 )/en , (2.13)

where E2 and Den are

E2 fi e (2.14)

Den = 1 + 2S2E2 cos(2K2) e2i4't . S2 E2 (2.15)
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Substituting (2.13) into the characteristic equation gives

1 - 9tjIij 2E2e - i(2K h+) 9S 1 E12 = 0 9 E(2.16)
Den

where E1 and E12 are

E = e -k&h xf , (2.17)

E12 = E?2E2(e - i(2ch +2iwft+0 )+S 2 E2e - i(2 x'Ph+20i)) (2.18)

2.2. Solving the Characteristic Equation

Equation (2.16) is a complex transcendental equation whose solutions require the

Newton's method for two variables described in Chapter 1. The solutions found by this

Newton's method will be called the "exact" solutions. To get two equations for F(x), the

characteristic equation is separated into its real and imaginary parts. The real part equation

from the characteristic equation is

F1 = 9119112 cos(2K1+O l )
EE 1(2.19)

De1SE" [cos(2KJ+2K 2+0I) + S2 E2cos(2K+4PJ)] =0
Den

where K1 and K2 are

KI = Kh (2.20)

K =,(2.21)
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and the imaginary part equation is

F2 = T.12 sin(2K 1+0 1)+ S1-E2[sin(2K +2K2+01)+ S2 E2 sin(2K 1+01)]= 0. (2.22)
Den

The partial derivatives involved in finding the Jacobian are difficult to obtain, since

the Yq's are functions of kn and because of the many products. Since the Jacobian is just a

focusing mechanism for determining the next guess, the reflection and transmission

coefficients are held constant with respect to the kn's for the derivatives. The consequence

of this may be more iterations necessary to focus on a solution.

Newton's Method also requires initial guesses to start the iterations. In the

program, the water factored solutions are calculated first, providing the initial guesses for

the sediment solutions. Both the water and sediment solutions are used for initial guesses

for the exact solutions. See the Appendix for the program listing.

2.3. Factoring the LLL Characteristic Equation

To factor (2.16) as described in section 1.4, a cross term must be added to the left

hand side. Then the equation of factors is (2.23).

-9t ~ ~ ~ 19tS22 EO1E0)0 (e-i(2Ki +2cz+ ) + SE E2e-i(2Ki+Oi)) ) (2.23)

Each of the factors can then be independently set equal to zero. The first factor is called the

water factor since all the parameters in it are associated with the wave paths in the water.

Its solutions will be called the water solutions. The second factor will be called the

sediment factor and its solutions, the sediment solutions.
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2.3.1. The Water Factor

To solve for the eigenvalues of the water factor,

(- I 9t 12E2e-=(2K'+oh)) 0 , (2.24)

the real and imaginary parts are set equal to zero.

1 - ~R%9t12 E2 cos(2Kl+0l) =0 . (2.25)

sin(2K1+Ol) = 0 . (2.26)

The equation formed by the imaginary part is a function of kn only, which is solved for

directly.

kn = I 2 I 2h 2.7

The value of 2nx is chosen instead of nxu in order to make cos(2nr) always equal to unity

which can be substituted into equation (2.25) along with kn to get

E= ln(9lt12) -J- (2.28)
2hkn

2.3.2. The LLL Sediment Factor

The sediment factor from (2.23) is

( 1 S 1 EE( (e-42,K+2K 2+4) + S 2 E2e-(2K,+))) =0 (2.29)
Den
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At this point, another approximation is made to make this factor easily solvable. The

variable S2 is set equal to zero. Setting S2 equal to zero is equivalent to only keeping the

first bottom bounce contribution in Figure 2.1.. Equation (2.29) becomes

(1 - 9t SIE2E2 e-i(2+2K2+)0 . (2.30)

Taking the real and imaginary parts of (2.30) yields the following two equations.

1 -5 RiSEIE 2 cos(2K,+2K2+01 ) = 0 . (2.31)

sin(2K,+2K2+01) = 0 . (2.32)

The imaginary part equation is only a function of kn and can be solved using Newton's

method for one variable (Kunz 1957, pp. 11). Following the example of the water factor,

the argument of the sine function is set equal to 2nir. Also r4R and K2 are replaced by their

k, forms to get

F(k.) = 2h(k2-k2)/2+ 2t(k2-k2)1/2+ 01 - 2nir = 0 . (2.33)

Newton's method requires the derivative ofF and initial guess. The initial guesses are

provided by the kn's found by the water factor. See the Appendix for the program listing.

Once the sediment factor kn's are found, they can be placed in (2.31), solved for

e,,.

ln(9iSI)(2.34)1k o+T-
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2.4. A Qualitative Comparison of the Solutions

The shapes of the three types of mode sets, exact, water, and sediment, varies.

Figure 2.2 shows the typical shapes for each set. The number of modes is determined by

the frequencyf and the water depth h by (2.35) (Clay and Medwin 1977, pp. 306).

n : L(2hsinOc) + 1 (2.35)

The modes are always close together for high kn's and spread out for low kn's. Also, the

harder the sediment, the fewer the modes because the minimum angle 9c for which there is

a mode increases. The discontinuity in the water solutions occurs at the k,, which

corresponds to Oc.

In Figure 2.2 and all the eigenvalue plots, the higher up on the y axis a point is, the

better that mode propagates, i.e., the IE, I is smaller so the loss is lower for that mode. The

range of the c. values is several orders of magnitude, therefore a log scale is used. Note

also that for the exact and sediment factor solutions, only eigenvalues above the critical

angle are plotted. The critical angle shows the onset of sediment penetration.

2.4.1. Forcing the Water Solutions to the Exact Solutions

If the sediment is very dense and the sediment attenuation is very high, a signal will

tend to stay in the water. Therefore the water factor solutions will propagate better than the

sediment factored solutions. The high density of the sediment makes 9t12 nearly equal to

one and thus the transmission into the sediment is small. Whatever waves do get into the

sediment will die out quickly due to the high attenuation. Figure 2.3 shows the water,

sediment, and exact solutions for these inputs. The matching of the water solutions beyond
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Eigenvalue Plot for a Medium Sediment
8
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Re(eigenvalue)

Figure 2.2. Typical LLL Eigenvalue Plot for a Medium Sediment

LLL Forcing Water Solutions to Exact Solutions
7-

S6.

5-
*water

4 o sediment

-- 4 , O0K X exact

E ~ kn that corresponds
08 0 to tecitical angle

S2 0

0.00 0.02 0.04 0.06 0.01 0.10 0.12 0.14

Re(eigenvalue)

Figure 2.3. Forcing the LLL Water Solutions to the Exact Solutions

(p2/pl=7, c2Ici=2.33, a2=1)
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the critical angle with the exact solutions indicates that the factors may be a good

approximation of the exact solutions.

2.4.2. Forcing the Sediment Solutions to the Exact Solutions

If the sediment density and sound speed are set approximately equal to the water

density and sound speed, and a small sediment attenuation is chosen, the sediment wave

path will dominate. Most of the initial wave is transmitted into the sediment because %t12 is

small for these conditions. Figure 2.4 shows the sediment and exact solutions to be almost

equal for these inputs, again indicating that the factors might be a good model of the exact

solutions.

LLL Forcing Sediment Solutions to Exact Solutions
7.

U .2 .*
C water

4 o sediment
* X exact

mo 2 mm •mammm-E 3

0.00 0.02 0.04 0.06 0.0 0.10 0.12 0.14
Re(eigenvalue)

Figure 2.4. Forcing the LLL, Sediment Solutions to the Exact Solutions

(P2/pl=l, c21cj=l, a2=O.Ol)
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Chapter 3

THE LIQUID/ELASTIC/ELASTIC MODEL

The LEE model treats both the sediment layer and the basement halfspace as elastic

materials capable of supporting shear waves. Four new parameters are thus introduced, the

shear speeds of sound in the sediment and basement, c2S and c3s, and the shear attenuation

coefficient for the sediment is a2s.

It may seem as though this study is incomplete since it does not address a liquid/

liquid/elastic model. That case was indeed studied but its results proved to be only slightly

different than the liquid/liquid/liquid model.

3.1. The LEE Characteristic Equation

The characteristic equation for the LEE model is (1.15). The derivation for 913 for

this case differs from the LLL case because the refection and transmission coefficients are

now for liquid/elastic boundaries. Also, new coefficients are needed to account for the

shear waves generated from compressional waves at the liquid/elastic and elastic/elastic

interfaces.

When a pressure wave strikes a boundary of an elastic medium from a liquid

medium, not only are pressure waves reflected from and transmitted through the boundary,

but also a shear wave is transmitted (Miklowitz 1978, pp. 156). If the initial medium is
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also elastic, there will also be a reflected shear wave. These two events are illustrated in

Figure 3.1. Pressure waves are drawn as solid lines, SV waves as dashed lines. The

notation SV stands for a shear wave with vertical polarization. Shear waves with

horizontal polarization are not coupled to the pressure waves and are not considered here

(Tolstoy 1973, pp. 188). An incident shear wave generates pressure waves at the

boundaries in addition to reflecting and transmitting shear waves (Miklowitz 1978, pp.

156). This is illustrated in Figure 3.2.

3.1.1. Reflection Coefficients for the LEE Model

For the boundary events, new liquid/elastic and elastic/elastic reflection and

transmission coefficients are required. The coefficients have been obtained from three

sources and are rewritten here with consistent notation and with incident angles measured

from the horizontal. The coefficients are listed in Table 3.1 (Bekhovskikh 1980, pp. 43-

47) and Table 3.2 (Miklowitz 1978, pp. 160-161). The new coefficients are illustrated in

Figure 3.3. Since signals that penetrate the bedrock do not return, the S3's are not used in

the calculations and therefore are not included in Table 3.2. The energy relationships that

govern the behavior of the liquid/elastic and elastic/elastic coefficients are listed in Table 3.3

(Ergin 1952, pp. 350) (Miklowitz 1978, 161-162).

3.1.2. 943 for the LEE Model

As in the LLL model, the incident pressure wave follows the path shown in Figure

2.1. The total reflection coefficient from the wave is similar to (2.3), assuming again that

the phases 012 and 023 are zero. The difference from (2.3) is that the coefficients are now

for liquid/elastic or elastic/elastic boundaries. The waves which reflect or transmit
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Figure 3. 2nrai. Shear Waves aet an as Boundary
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ppP PP PpS

Lqi9t12 -52 ! 21
Elastic PS pp 9t PS SP

= + 312 2 1  9 e 2 1 321

921

/PPPPS /SP ss
Elastic ase, 912 3 e no eu 23 i t 23

Elastc ppPS SP SS
233 ( 323

Figure 3.3. Illustration of LEE Reflection and Transmission Coefficients

pressure waves are designated pp. The contribution to 9t13 for the incident pressure wave

which remains a pressure wave, the pp series, is then

11221 923 e-2 (3t

In the elastic case, 921 does not equal -9112 and no further simplification takes place.
For an incident pressure wave that transmits a shear wave which remains a shear

wave in the sediment as shown in Figure 3.4, the ss wave, the contribution to 9t13 is

PS SP SS

ss 12219t23 e -2i s

assuming phases dhes s and 023s s are zero.
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Table 3. 1.

Reflection and Transmission Coefficients

for
Liquid/Elastic and Elastic/Liquid Boundaries

Z I Z 2 =P2C2 Z2S P2C2S
sin 01 sin 02 sinl 0 2S

=[2 COS2(202s) + Z2S sin2(202s) - Z1IJD

= [ Z, - Z2 COS2(260,s) + Z2s sin2(202s) YID

~Ss =-[Z, + Z2 COS2(2012s) - Z2s Sin2(26 ) Y'D

PP -[2p1 & cos(20s)VD

PS [2p, -ZA sin(202sl/

p [2p2 -Z'. cos(202s)

SP= [-2p,2 - sin(2Ozs)]/0

D =Z2 cos 2 (2&2s) + Z2S sin2(2&2s) + Z1
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Table 3.2.

Reflection Coefficients
for the

Elastic/Elastic Boundary

PJ2 =P2CS e = 2112+ 9 3

A13 =P 3 Cis f = 2(u2 - p)

b2 =tan2 2S - 1 g = 2 b2- /13b3

b3 =tan2o 3 - 1 h =2/1 3 +. 2 b2

pI =e =6O tanO.s P2 =g9taO

P3 =h tan O2s tan 3  p4= -f tan O tan 2s tan 8

qi =f an tan82s tanOs q2= h tan 92 tan O~s

q3 -g tanO02S q4 = P1

9tp= [(PI-P3)(q2+q4) -(P2+p4)(ql-q3)IDD

9t3= [-PI +P3)(q2-q4) + (P2-P4)(ql +q3)]/DD

9t23 = [2 (P3q, -p Iql D

9t3= [2(p4q2-P2 q4)YJDD

DD = [(PI +P3)(q2+q4) - (P2+P4)(11 +q3)]
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Table 3.3.

Energy Relationships for LEE Model

Liquid/Elastic

Pressure wave in water against solid

I= pp2+ P2tan 2 pp2 P2tan02s ps21= .l2 + 312 +  - 12

p, tanO1  p, tan 1

Pressure wave in solid against water

I=9tpp2 +tanO ,ps 2 P tan9l pp21 21 +  /21 - 21

tan2 p 2 tan02

Shear wave in solid against water

Itss2 +tank, ,Sp2 p 1 tanO1 Sp2
1 32L + - 21 + - ,121

tanks P2 tanO2s

Elastic/Elastic

Pressure wave in sediment against basement

,9pp2 tans p 2 P3tanO3,. pp2 p3tanO3S ,pS 2
9t- 123 + -3 9t3.23 +  o23

tan2 p2tan2 p 2 tan 2

Shear wave in sediment against basement

9SS2  tn ! P3 tanfl03 3sp 2 P3tarO3s ss2
I =9t23 + p23 - P23 +323tanOs P2tank~s P2tarnks
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Two combination shear/pressure waves are also included in %13, the sp wave and

the ps wave. (There are many other combinations possible. The pp, ss, sp, and ps are the

only ones studied here.) The sp wave travels as indicated in Figure 3.5. Assuming its

phase changes at the boundaries 4 3SP and 0 1 PP are zero, the sp contribution to 9113 is

PS PP SP
Sp _ !12321 9t23 e-i(2.e3i)2s3

9t 13- PP PP(3)92l 9t23 e-21 2t

Similarly from Figure 3.6 and setting 0z2Ps and 21
sP equal to zero, the fourth component

of 9t13 is

P PP 3SP 9PS
13 S -- 12321 9"23e-i1'e-it (3.4)

1 S9tl 9t s e-2i2st

Summing the four terms together gives for the LEE case

PP PP PP Ps SP SsPP 312-321 9C23 e- + 312521 9t23 e- 2 'r s

9t 13=912+ - PP • + SS 2
I -3= 1923e - 2PP P 1 - 9 21 923e- 2 iW (3.5)

PS PP SP PP P PS

312 321 9t23 e-i tIe- i' ' st + 312321 9t23 e-inte-t
3PP PP Ss

9t21 9t 23 e - 2 i  1-9 321 %3 e - 2i2s

3.1.3. Incorporation of Attenuation into 943 for the LEE Model

Just as in the liquid layers, signals in elastic layers are attenuated. The attenuation

in the sediment is dependent upon the length of the path traveled and will be included

everywhere in 9t13 that the phase changes for the paths occur. The path distance traveled is

r2s. The attenuation factor for the elastic sediment for a2s in dB/n kHz is

As = I10-(an/f/OOOO)r'• (3.6)
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Figure 3.4. Reflection and Transmission Paths for the SS Series
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\1 232 21~2
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Figure 3.5. Reflection and Transmission Paths for the SP Series
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Figure 3.6. Reflection and Transmission Paths for the PS Series

Due to the complex k,, K2 and K2s are replaced by the following two equations.

R -ik R •(3.7)

K2s = RS- _s •kneW K2 (3.8)

Making the following definitions and multiplying denominators by their complex

conjugates gives for 9113
S P PPe PPt, PP,2

SPP , (3.9)

sSS sPSe SP SS, 2
--12321923S , (3.10)

SP =PS P(P SP- 123219J{23AAs ,(3.11)
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S SePPtSP3Ps-

SPS=1221923,AAS , (3.12)

sPP = 9PP PP 2
2 21923,2 , (3.13)

e.SS SS cSS 2
= t 21 9t23,As , (3.14)

E2 s = e-ksWhd , (3.15)

K2 K-2t ,(3.16)

K2S- 2st ,(3.17)

PP S PP(E =2 2 S1 - (S PE2)cos(2K2t ) + (SPPE2)2

+ sSSE 2 (e-2iK2 -SSS)+ 2S 2eSS r 2 %2

(S2SE2)cos(22sRt) + (S ) (3.18)

S SPE2s e-i4(E 2e-iK2-SPPE2 I eiK2)

1 - (S2'PEF)cos(22Rt) + (S2ppE2)2

S PSE 2 e-4K2(E2se-iK2sslS2E eis)

+1 - (ssEj)cos(2Kt) + (SSE.) 2

3.1.4. Substitution of t13 into the LEE Characteristic Equation

Making a few more definitions and placing (3.18) into (1.15) gives the LEE

characteristic equation (3.21).

Denl = 1 - (S PE2)os(24:t + (S2"E2)2 . (3.19)
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Den2 = 1 - (SSE2)cos(2it) + .22S (3.20)

1~ -~(E 2I+2E21-i(2 (+ 2)

-RSs (E2E2se.SPEi(21K,+2K2+4h) s.2 -i(2K+(h))Den 1 2 1
(E2E e-2,+Ks4)- SSSEe-.i(2K1+ 01)) (3.21)

tDen2 I1b 2

9tS (E2E2E 2se-i(2K +K2+K2s+ 4h) - SPPE2 E21E 2 se-i(2Ki -K 2+K2s + 01))
Denl 1 2

P(EE2 E2 se-i(2K+K2+Ks+01) 
- SSE 2 E1e-i(2K+K2-Ks+0) = 0.Den2I 2

Two approaches were taken to solve this complex function of both kn and en. First,

Newton's method for nonlinear systems, and second, the factoring technique.

3.2. Solving the LEE Exact Equation with Newton's Nonlinear Method

To solve the LEE characteristic equation using Newton's Method for nonlinear

systems as described in section 1.3, the equation must be broken into its real and imaginary

parts to give two equations for the two unknowns, k. and e.. The Jacobian for these two

equations must also be determined. Since the calculations are done by computer, a

discussion of some of the computational pitfalls is also included.

The imaginary part of (3.21) gives for FI:
PP E2 .S n 2 I 1

F1 = 0 = 9 l 9E 1smI(2K +)

+ [E2E 2 sin(2K1 +2K 2 + 0i) - S2PPE2 sin(2K, + O)]
Den ISS

+ [E2E2ssin(2KI+2K2s+*0) - SSSE sin(2KI+O0)] (3.22)Den2 2 I

+ Denl [E1E2E2ssin(2K,+K2+K2s+Ol)_ E2 EE2ssin(2K-K 2+K2s+ 1)]

21 1 P2K2Sp)
+ DI~ [E2E 2E2ssin(2K,+K 2+K2s+Ol)_SSE2E 2E21sin(2Kl+K 2 .K2s+0l)]Den2 2 2
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and the real part gives F2:

F2 = 0 = 1 - 91i9tEcos(2Ki+ 01)

5 SP [E2E2 cos(2KI +2K2 + 01) - SPPE cos(2K, +
_______ 22+2K 25 + ~i)-" S SEcos(2Kl + i)] 3.3Den1I

9~ .SSP
'9t' '[2E2scos(2KI+2K2s+4P)- SSSE~cos(2KI+<P)] (3.23)

_ 1 [EjE2E2scs(2Kj+K 2+K2s+0)-S PEEj E2scos(2K, - K
2+K2s+ Ol)]

1sS [E2E2E2scos(2K,+K2+K2s+4PI)_SsSE12E2E2lcos(2K1+K2 -K2s+ a)]Den2

To form the Jacobian matrix for this pair of equations, derivatives of F1 and F2

with respect to k, and r. are needed. These derivatives are quite complicated due to the

many products and quotients involving the K's which depend on both k. and e. Also the

reflection and transmission coefficients depend on i's. Since the inverse of the Jacobian is

only a focusing mechanism to the next guess, the derivatives were simplified by treating the

coefficients as constants. The penalty for this is a probable increased number of iterations

necessary to find the eigenvalues.

Newton's method works well if the slope of a function is steep enough near a root

and the initial guess is close enough. When working with complicated functions such as

(3.22) and (3.23), especially when it is not easy to sketch the functions, finding the roots

becomes a difficult task. Initial guesses must be very close or roots will be missed.

The roots found by the factoring technique discussed below were used as the initial

guesses. Since these were not always good enough to find all the exact roots, the program

also used guesses in between the factored roots. Due to slow convergence, round-off

error, and insufficient guesses, some roots were still missed. See Appendix for program

listing.

To determine if the factored eigenvalues generated by the program were reasonable,

the results were compared to those produced by RAYMODE using the same input
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parameters. RAYMODE, a commly used propagation loss program, was altered to have

the same reflection coefficients as used here and the agreement of the two programs was

very good.

3.3. Factoring the LEE Characteristic Equation

The factoring technique described in section 1.3 can be used on (3.21) with the

introduction of some product errors. Resulting are five factors to be called the water and

sediment pp, ss, sp, and ps factors.

3.3.1. The LEE Water Equation

From (3.21), the water equation for the LEE case is

(1- l t1P4e-i(2dA )) (3.24)

Taking the real and imaginary parts to form two new equations leads to the water solutions.

k 2 fk ((2nlr-01) )I'1 (3.25)

The LEE water solutions differ from the LLL water solutions only in the 9 12IP factor.

3.3.2. The LEE Sediment Equations

From (3.21), the pp, ss, sp, and ps factors can be written. The method for solving

each equation is the same. Take the real and imaginary parts of the equation to form two
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equations. Solve the imaginary equation for k. using Newton's method for one variable

and substitute the result into the real equation solved for 4. The solutions to the sediment

factored equations are

FPP(k ) = 2h(k?2kn)12+ 2t(k2 -k,2)12 + I1 - 2nfr = 0 , (3.27)

CE= In (9tISP) , (3.28)

FSS(kn) = 2h(k-k2)1/2+ 2t(k2s-k)/+0l - 2nir = 0 , (3.29)

4~s =In (9tSSS) 1 (3302kn We/, + /4 )I

FSP(k ) - = 2h(k1_k 2)(2 + t(k k2) 1/2 + t(k2sk2)1/2 + 0 - 2nir = 0, (3.3 1)

EP = In (9tSSP) I - I, (3.32)kn, (2h/ , + ' + ' ),

enps In 91 I PS)(3.33)kn (2/lx + YXI+ Y/I)"

3.4. Comparison of Factored to Exact Solutions

As with the LLL model, extreme parameter sets were chosen to force the exact solutions to

either the water or various sediment path solutions. For the force to water test, a high

density and sound speed are used. Figure 3.7 shows the agreement between the water

solutions above the critical angle and the exact solutions. To encourage the sediment

paths, similar sound speeds for water and sediment are entered for all three runs. For the

pp path, a small sediment attenuation and a high sediment shear attenuation result in the
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exact solutions being equivalent to the pp solutions as shown in Figure 3.8. Increasing the

pressure wave attenuation for the sediment while decreasing the shear wave attenuation

enhanced the shear paths as shown in Figure 3.9.

LEE Forcing Water Solutions to Exact Solutions
7. jU

S6-

5- o sediment pp
+ sediment ss

• -4a sediment ps/spm*

23 X exact

o 202-- . 0" • +

0 +

0.00 0.02 0.04 0.06 0.08 0.10 0.12 014
Re(eigenivalue)

Figure 3.7. LEE Fce of Water Solutions to Exact Solutions
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LEE Forcing Sediment PP Solutions to Exact Solutions

Uwater
S5 o sediment pp

_ 4 X 0 + sediment ss
4. a0a lkw-g l sediment ps/sp

0 0 x~
3- x ' ex=c

.+__ 2 .- +
1 .t"I • 0 • ° •

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Re(eigenvalue)

Figure 3.8. LEE Force of Sediment PP solutions to Exact Solutions

LEE Forcing Shear Solutions to Exact Solutions

;o 5 o sediment pp

+ sediment ss
__4 sediment ps/sp

3 X exact

0 2 +

+

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Re(eigenvalue)

Figure 3.9. LEE Force of Sediment Shear Solutions to Exact Solutions
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Chapter 4

RESULTS

A comparison of the eigenvalues generated by the exact solutions and the factored

solutions in both the LLL and LEE models was conducted for four types of sediments: a

fine fluid, a medium, a hard, and a semiconsolidated sediment. Some typical sediments

that fall into these classes are silty clay, till and sand, coarse sand and gravel, and chalk and

shale. Table 4.1 lists the numbers used for the sound speeds and attenuation coefficients

for the water, sediments and bedrock (Hamilton 1980, pp. 1326) (Stoll 1986, pp. 429)

(Clay and Medwin 1977, pp. 258) (Beebe 1981, pp. 78, 94, 115, and 130).

Two criteria are used to evaluate the factored solution eigenvalues: placement on the

eigenvalue plot of -log(ImIe,) vs. kn, and a mode summation comparison between

factored solutions and exact solutions. An approximate pressure mode summation equation

(4.1), adapted from Clay and Medwin's (9.2.29), is an incoherent sum for a source and

receiver located at the same depth. The depth, z, is 100m and the horizontal range, r, is

10kn for the calculations. A log ratio of the water (w) plus sediment pp (s) solutions sums

divided by the exact (e) solutions multiplied by 10 gives the mode sum comparison in dB

as in (4.2). The closer the mode sum is to zero, the better matched the factored solutions

are to the exact solutions.

# of modes cos( s..,z)sin(Kw.saz)edI) 2  (4.1)
Ro.l ]kr)



39

Table 4.1.

Geoacoustical Parameters for Water, Sediments, and Bedrock

Layer p c a Cs as
(g/cm 3) (m/s) (dB/m kHz) (ms) (dB/m kHz)

Water 1.0 1500

Fine Fluid 1.4 1470 0.01 250 15.0

Medium 1.9 1600 0.03 450 13.0

Hard 2.0 1720 0.003 650 10.0

Semiconsolidated 2.1 2400 0.05 1000 1.0

Bedrock 2.7 5500 0.05 2900 (0.07)

mode sum comparison i10 log M, + M, (4.2)me

4.1. The LLL and LEE Reflection and Transmissions Coefficients

It is useful to examine the plots of the reflection and ransmission coefficients in

Figures 4.1-4.5, made for a medium sediment at 30 Hz. Some of the coefficients affect the

eigenvalues drastically so it is important to see their behavior.

Figures 4.1 and 4.2 compare the LLL 942 and 923 with the LEE 9112
pp and

923PP. There is little difference between the two 912'S, the highest difference being for

the lowest modes, or highest k. 's. 923 is equal to one over most of the k. range
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I R12 I vs. Re(eigenvalue)
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Figure 4.1. Comparison of LLL 9t12 and LEE 91t2 PP

R R23 I vs. Re(eigenvalue)
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Figure 4.2. Comparison of ILL 9t23 and LEE 9t 2 3 PP
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while 912 3PP is not constant or even smooth. At the lowest modes the falloff of 9t23PP is

most important. The swings in 923PP affect the shape of the LEE sediment pp solutions

more than the exact solutions.

Figures 4.3-4.5 display the rest of the LEE coefficients. Figure 4.3 shows the

extreme difference between 9t 21 PP and 9121SS for the LEE case. From this plot, it is easy

to see how the shear waves are attenuated quickly. Figure 4.4 shows the LEE 9123s s ,

9123SP and 9123PS coefficients. They, like 923PP, are not smooth, but their peaks and dips

fall in the region of low k,. Figure 4.5 displays the LEE transmission coefficients.

I R21 vs. Re(eigenvalue)
1.2

1.0.

0.8

r eq 0.6 IR21 pp I
I • * IR21 ssI

0.4-.

0.2

0.0 •
0.00 0.02 0.04 0.06 0.08 0.10 0.12

Re(eigenvalue)

Figure 4.3. Comparison of LEE 9t21PP and 9t21SS
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R 123 Ivs. Re(eigenvalue)
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4.2. LLL Model Results

The first study compares not only the differences between the four types of

sediments, but also tests variations with frequency and sediment thickness. Four

combinations of thickness and frequency are examined: low thickness (10m) and low

frequency (10Hz), low thickness and high frequency (50Hz), high thickness (200m) and

low frequency, high thickness and high frequency.

4.2.1. General Trends

From (2.35), the expression for the number of modes in a duct, it is evident that

with increased frequency or water depth there will be an increased number of modes.

Consequently frequencies above 50 Hz were not studied to keep the number of modes

manageable. The water depth for this study was arbitrarily kept constant at 700m.

Comparing Figures 4.6 and 4.7 with 4.8 and 4.9 shows the expected increase in mode

number for a frequency increase.

For the larger sediment thickness , the sediment mode attenuation is greater than for

the smaller thickness case. The wave travels further in the sediment and is therefore more

attenuated. Also, there is more attenuation in the higher frequency runs because the

attenuation factor A goes up with frequency.

4.2.2. Comparison of Factored Solutions to Exact Solutions

As can be seen in Figures 4.6-4.9, the mode attenuation, or Ie.1, is greater for both factored

solutions than for the exact solutions. One of the factored solutions should have nearly the
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equivalent mode attenuation of the exact eigenvalues so it may be used in place of the exact

solutions. From Table 4.2, the mode sum comparisons are too high, as high as 30 dB for

the semiconsolidated 10Hz, 10m case.

Since the water factor yields solutions that are straight forward to calculate, it will

not be changed. An adjusted sediment factor is needed.

4.2.2.1 Derivation of the New LLL Sediment Factor

The sources of error in the sediment factor are the product term added to the left

side of the characteristic equation as described in section 1.4 and setting S2 equal to zero in

section 2.3.2. Keeping S2 in the equation did not improve the results. To change the

sediment factor, keep the water factor, and yet remove the error, a new sediment factor was

developed by dividing the characteristic equation by the water factor.

(1 - t19t 13e-2iK,) (4.3)

(1 - 9t 19t 12e-2iK1)

Writing the denominator as a geometric series, expanding that series, and multiplying gives

(1 - 9 19t 13 e-2iKi + 9 19t12e-2iK, - l9tlR291t 3e--4iK, + 91291 2 e-4iK, .. ). (4.4)

After substitution for 9t13, the positive terms in 9412 drop out leaving

1 - 9219t23A2e-2i 
1

The new sediment factor is to be of the form

I - Ce- 2i(KI + X2)  (4.6)

where C, with the denominator expanded, is
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2 2 •

C = %1 3 12 9t 23 Z 2 1A 2 [1 + 901 1t 12e-2iKi + 1Ri 12e "4K1 +...] x

t1 i 29t ~eiK + 29t 3A4e-4'K2..](47

In order to obtain a smooth mode attenuation, 2K1 is approximated as much larger than

2K2, which amounts to h being much larger than t. The eigenvalues of this factor with

combined phase KI+K2 will be very close to those of the water factor, since the sediment

phase is very small. Both exponentials e-2iK and e- 2iK2 are approximated as unity in the

magnitude of C.

I C 9~Z 1 9~2 S21
2 [1 + 9t19t12 + 9Iit 2 ~29 t23A 2 + 1229t 23A 4].(48

Both series work best truncated to quadratic form as in (4. 8). Higher orders gave mode

attenuations of the wrong sign, indicating the sums were diverging. The original sediment

factor has the two terms in brackets equal to unity.

4.2.2.2 Comparison of New LLL Sediment Factor with Exact Solutions

From Figures 4.6-4.9 the new sediment factor e,'s are much closer to the exact

er's. Table 4.2 confirms the improvement with much smaller mode sum comparisons.

The new sediment factor works very well for the fine fluid, medium, and hard sediments,

but is not improved enough for the semiconsolidated sediment.

4.3. LEE Model Results

The tests on the LEE model were done for a constant low frequency (30Hz) since

the affects of frequency have already been shown in the LLL study. Two sediment depths,

lOn and 300m, were examined for a water depth 900m. The results are shown in Figures

4.10-4.11 and Table 4.3.
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Table 4.2.

LLL Mode Sum Comparisons in dB with Sediment and New Sediment Factors

10m, 10Hz 10m, 50Hz

Sediment New Sediment Sediment New Sediment

Fine Fluid -2 0 -2 0

Medium -13 -1 -11 0

Hard -21 -2 -19 -2

Semniconsolidated -30 -9 -14 -9

200m, 10Hz 200m, 50Hz

Sediment New Sediment Sediment New Sediment

Fine Fluid -2 0 -1 1

Medium -9 -1 -7 1

Hard -15 -1 -14 0

Semiconsolidated -27 -9 -4 -4
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There are four sediment factors, pp, ss, sp, and ps. The pp mode attenuation has a

dip and peak corresponding to the dip and peak in the 9t23PP plot in Figure 4.2. The ss,

ps, and sp mode attenuations are much lower than the pp. The ps and sp solutions are

actually equivalent since their coefficient products, 5 12PS9123SP!3 21 and - 129t23PS!32 1SP

are equivalent.

The water and sediment pp solutions are the best approximation to the exact

solutions. The ss and ps/sp solutions are usually highly attenuated since 312PS and S 21
SP

are small, and can be left out of the LEE model. The dips and peaks in the sediment pp

solutions are cause for concern when the using the factors in place of the exact.

The program missed some of the modes for the LEE exact case. The accuracy of

mode sum comparisons, which include only the water, sediment pp, and exact solution

sums as in the LLL case, is thus somewhat limited.

A new LEE sediment pp was developed analogous to the one for the LLL new

sediment factor. With both series linear, quadratic, cubic, fourth order and various

combinations of those, e.'s of the wrong sign were generated. Also the mode attenuation

plot was not smooth, so the method of correction was abandoned.

4.4. Comparison of LEE Model to LLL Model

Figures 4.12-4.13 compare the LLL and LEE water and sediment pp solutions.

The water factors for the LEE and LLL models are nearly identical for identical input

parameters. This is expected since 9t1 is the same for both and 9t12P9 for the liquid/elastic

boundary is nearly equal to 9t12 for the liquid/liquid boundary as shown in Figure 4.1.

Consequently, the LLL water factor can be rv ed in a LEE model.
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Table 4.3.

Approximate LEE Mode Sum Comparisons in dB

10m, 30Hz 300m, 30Hz

Fine Fluid 6 2

Medium 8 10

Hard 8 3

Semiconsolidated 16 7

The sediment solutions do not propagate as well in the LEE environment as they did

in the LLL environment due to the added shear loss. 9t23PP is not equal to one for the LEE

case as it was for the LLL case as shown in Figure 4.2, but instead has dips and peaks,

thus changing the shape of the sediment pp solutions.
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Chapter 5

CONCLUSIONS

Approximate solutions for the three layer duct characteristic equation were

developed for quickly obtaining the eigenvalues. The LLL model factors are both quick

and a good approximation of the LLL exact solutions. The LEE factored solutions are also

easy to calculate, but the loss of accuracy may outweigh the benefits of speed.

The method of factoring described in section 1.4 was applied to both the LLL and

LEE characteristic equations. The factored solutions were then compared to the exact

solutions for each model. Also the LLL and LEE factored solutions were compared to each

other. Variations in sediment, sediment thickness, and frequency were examined.

The LLL factored solutions predicted losses much higher than the LLL exacts. A

new sediment factor was then developed, based on the characteristic equation and the water

factor. The losses for the new factor are much closer to the losses of the exact solutions

with the best results for the fine fluid, medium, and hard sediments. The losses of the new

factor for the semiconsolidated sediment, which favors the water path, were improved, but

not as much as the others.

The factored solutions for the LEE model also predicted more losses than the LEE

exact solutions. Attempts to correct the sediment pp factor proved inadequate. Even

though this LEE factoring scheme predicts too much loss, using it may still be better than

using a LLL model which would predict far too little loss for an elastic sediment.
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APPENDIX

COMPUTER PROGRAM LISTING

The following computer listing is a program that finds the eigenvalues for the ILL

water, sediment, new sediment, and exact solutions. Also it finds the LEE water, sediment

pp, ss, sp, and ps, and exact solutions. The program is written in HP BASIC. The

symbols and variable names used in the program do not necessarily match the symbols

used in the text.

RAD
OPTION BASE 1
GINIT
GCLEAR
GRAPHICS ON

DIM Kw(90), Ew(90), Ks(90), Es(90), Ksm(90), Esm(90), Kn(90), En(90)
DIM Kwl1(90), Ewl1(90), Kw2(90), Ew2(90)
DIM Kw3(90), Ew3(90), Kw4(90), Ew4(90), Knl(90), En 1(90)
0DM /Parameterl/ Cl, C2, Rhol, Rho2, H, T, Freq, Alfa2, Ri, Riphase
COM /Parameter2/ C2s, C3, C3s, Rho3, Alfa2s
0DM /Wavenumber/ W, Ki, K2, K2s, K3s

C1 =1500
C3=2900
Rhol1= 1.0
Rbo3=2.7
H--900
T= 10
Freq=30
R1=-0.99
R lphase=Pl

CALL Label4axes(1)

FOR Diffcase=1 TO 4
SELECT Diffcase
CASE 1

C2= 1470
C2s=250
Rho2=1.4
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Alfa2=-0.01
Alfa2s=15.0

CASE 2
C2=1600
C2s=450
Rho2= 1.9
Alfa2=-0.03
Alfa2s= 13.0

CASE 3
C2= 1720
C2s=650
Rho2=2.0
Alfa2=0.03
Alfa2s=10.0

CASE 4
C2=2400
C2s=1000
Rho2=2. 1
Alfa2=0.05
Alfa2s=1 .0

END SELECT

W=2*PI*Freq
K1=W/C1
K2=W/C2
K3=W/C3
K2s=W/C2s
K3s=WIC3s

ALPHA ON
OUTPUT KBD;" K";

CALL Water(Kw(*),Ew(*),Nmodew,"1Il","o",Nofextras)
CALL Water(Kw 1 (*),Ew 1 (*),Nznode I w,"'lez","o",Nofextras)

CALL Sed(Ks(*),Es(*),Kw(*),NmodesNmodew,"1ll"t,"6 pp","+",Nofextras,"s "

CALL Sed(Ksm(*),Esrn(*),Kw(*),NrnodemsNrodew,"llm"," pp",u",Nofextras,"'sm")
CALL Sed(Ksl1(*),Esl1(*),KwlI(*),Nmiodel s,Nmode 1w,"lee"l," pp","+",Nofextras,"s1)
CALL Sed(Ks2(*),Es2(*),Kwl1(*),Nmode2s,Nmoydel1w,"lee"," ss","*"Nofextras,"s2")
CALL Sed(Ks3(*),Es3(*),Kwl1(*),Nmode3s,Nmodel1w,"lee"," sp","x",Nofextras,"s3")
CALL Sed(Ks4(*),Es4(*),Kwl1(*),Ninode4s,Nmodel1w,"Ice"," ps"," '-",Nofextras,"s4")

CALL Exact(Kn(*),En(*),Kw(*),Ew(*),Ksm(*),Esm(*),Nmoden,Nmodew,Nmodems,
"61ll","A"',Nofextras,Diffcase)

CALL Exact(Kn 1(*),Enl1(*),Kwl1(*),Ew 1(*),Ksl (*),Esl1(*),Nniodel n,Nmodel w,
Nmode 1s,"Ice","n",NofextrasDiffcase)

CALL Sort(Kn(*)XEn(*),Nmoden)
CALL Sort(Kn 1 (*)En I (*),Nmode I n)

CALL Natjoge(Ew(*),Ln.ew(*)Nmodew)
CALL Nat-joge(Es(*),Ln.es(*),Nniodes)
CALL Natjoge(Esm(*),Ln-esm(*),Nmodems)
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CALL NatIOg-e(En(*),Lflen(*),Nmoden)
CALL Natlog..e(Ew I (*),Ln..ew 1 (*),Nmode 1 w)
CALL Nat_loge(Esl (*),Ln__.esl (*),Nrnodels)
CALL NatIog-e(Es2(*),Ln-es2(*),Nmode2s)
CALL Nat-lo&..e(Es3(*)Ln..es3(*),Nmode3s)
CALL Nat-log...e(Es4(*),Ln..es4(*),Nmode4s)
CALL Nat_iog..e(En 1 (*),Ln..en 1 (*),Nmode i n)

CALL Fouraxes(5JDiffcase)

CALL Ln_evskpot(Kw(*),Ew(*),Lnew(*),Nmodew,5,"o")
CALL Ln-e vs-k..plot(Ks(*),Es(*),Ln es(*),Nmodes,l1 "-i")
CALL Ln_e_vsic..pot(Ksm(*),Esm(*),Lnesm(*),Nmodems,4,"u")
CALL Ln-e-vs...k..plot(Kn(*),En(*),Ln en(*),Nmoden,7 ,"A")
CALL Ln_.e~ys......plot(Kwl1(*),Ewl1(*),Ln ewl1(*),Nmodel1w,6,"o")
CALL Ln_e..vs.k..plot(Ksl1(*),Esl1(*),Ln...esl1(*),Nmcdel1s,3,"+")
CALL Ln_eys..kplot(Ks2(*),Es2(*),Lnes2(*),Nmoe2s,4,*"~)
CALL Ln_eysjplot(Ks3(*),Es3(*),fLn-es3(*),Nmode3s,5 ,"x")
CALL Ln-e-ys.c..plot(Ks4(*),Es4(*),Ln-es4(*),Nmode4s,7 ......)
CALL Ln-e-vsj..plot(Kn 1 (*),En 1 (*),Ln en 1 (*),Nmode I n,2,"n")

PRINT "Lii Mode Sum"
CALL Incohrnt(Kw(*),Ew(*),Ks(* ),Es(* ),Kn(*),En(*),Nmodew,Nmodes,Nmoden,

Indbex,Nofextras)

PRINT "LLL Mode Sum with New Sediment Factor"
CALL Incohrnt(Kw(*),Ew(*),Ksm(*),Esm(*),Kn(*),En(*),Nmodew,Nmodems,

Nmoden,Indbex,Nofextras)

PRINT "LEE Mode Sum"
CALL Incohrnt(Kwi (*),Ewl1(*),KslI(*),Esl1(*),Knl1(*),Enl1(*),Nmode1 w,Nmode is,

Nmodel1n,IndbexNofextras)

NEXT Diffcase
END

SUB Water(Kw(*),Ew(*),NmodewType$,Sym$,Nofextras)

OM /Parameteri/ Ci. C2, Rhol, Rho2, H, T, Freq, Alfa2, Ri, Riphase
0DM /Wavenumber/ W, K1, K2, K2s, K3s
Frmti :IMAGE 4X,4A,2D,4A,SD.4DE,5X,4A,2D,4A,SD.4DE,3X,D.2D,5X,2D.D
INTEGER N,M,I

FOR 1=1 TO090
Kw(I)-=O.O

NEXT I
PRINT
PRINT TAB(19);"WATER ";Type$;" SOLNS";Sym$;" R Phil"
PRINT

Nofextras=O
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Nmodew=O
N=l

WHILE ((2*N*PI-R lphase)/(2*H))z=Kl

Kw(N)=SQR(K 1A2-((((2*N*PI-RlIphase)/(2*H))A2)
Kappa 1=SQR(K lA2-Kw(N)A2)

IF (A2-Kw(N)A2)<O THEN
Kappa2=O
Noextras=Noextras+ 1

ELSE
Kappa2=SQR(K2A2-Kw(N)A2)

ENDIEF

Phil =ACS(Kw(N)IKl )* 1 80/PI
Zi 2=(Rhol *Kappa)/(PJho2*Kappal)
R1211=(l-Zl2)/(l+Z12)

Nmodew=Nmodew+ 1
M=Nrnodew
Kw(M)=Kw(N)

SELECT Type$
CASE "ill'

Ew(M)=LOG(ABS(R 1*R 1211))*Kappa 1/(Kw(M)*2*H)
PRINT USING Frmtl;" Kw(",M,") = ",Kw(M)," Ew(",M,") ",Ew(vl),

R1211,Phil
CASE "lee"

IF (K2SA2-Kw(N)A2)<=O THEN
Rl21e=l

ELSE
Kappa2s=SQR(K2SA2-Kw(N)A2)
Phi2s=ATN(Kappa2slKw(N))* I 80/PI
R l2num=-(-ZI 2+ 1-(SIN(2*Phi2S))A2*( 1-Kappa2/Kappa2s))
Rl2den=(Z1 2+ 1-(SIN(2*Phi2s)%2*(l1-Kappa2/Kappa2s))
R12le=Rl2num/Rl2den

END IF

Ew(M)=LOG(ABS(R I*R 121e))*Kappal/(Kw(M)*2*H)
PRINT USING Frnnl ;"Kwl1(",M,") = ",Kw(M),"Ewl1 (,M,") =X()

R12le,Phil
END SELECT
N=N+1

END WHILE
PRINT
SUBEND

SUB Sed(Ks(*),Es(*),Kw(*),Nmodes,Nmodew,Type$,Kini$,Sym$,Extras,S$)

Frmtl: IMAGE 4X,SD.3DE,6X,2D,SD.3DE,5X,D.3D,3X,D.2D,3XD.2D,4X,2D.D
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Frmt2: IMAGE 4X,SD.3DE,6X,2D,SD.3DE,5X,D.3D,2X,2D.2D,3X,2D.2D,3X,

2D.2D,3X,2D.D
Frmt5: IMAGE 8X,A,2A,I1OX,A, IOX,A,2A,9X,5A,3X,3A,4X,3A,4X,4A
Frmt6: IMAGE 8X,A,2A,I1OX,A, IOX,A,2A,9X,5A,3X,3A,5X,3A,5X,3A,3X,4A
Frmt7: IMAGE 8X,A,2A,I1OX,A, 1OX,A,2A,9X,5A,2X,5A,2X,5A,2X,5A,3X,4A

COM /Parmeterl/ Cl, C2, Rhol, Rho2, H, T, Freq, Alfa2, Ri, Riphase
COM /Paramneter2/ C2s, C3, C3s, Rho3, Alfa2s
COM /Wavenumber/ W, Ki, K2, K2s, K3s

INTEGER Mm, Numd4ivs, N, M, Stepslow, Nn

PRINT
PRINT TAB(16);"SEDDMENT ";Type$;" SOLNS"; Sym$
PRINT

SELECT TYPE$
CASE "W1"

PRINT USING Fnr5;"K",S$,"N","E",S$,"Atten","R 12","R23","Phil1"
CASE "llrn"

PRINT USING Frnt5 ;"K",S$,"N","E",S$,"Atten","Rl12","R.23","Phi 1"
CASE "lee"

SELECT Kind$
CASE " pp"
PRINT USING Frmt6;"K",S$,"N","E",S$,"Atten","R23","Tl2pp","T2 lpp","Phi 1"

CASE " ss"
PRINT USING Frrnt7 ;"K",S$,"N","E",S$,"Atten","R23ss","TI 2ps","T2 1sp","Phi 1"

CASE " sp"9
PRINT USING Frmt7;"K",S$,"N","E",S$,"Atten","R23sp","Tl12ps","T2 1pp","Phi 1"

CASE " PS"
PRINT USING Frrnt7;"K",S$,"N","E",S$,"Atten","R23ps","Tl12pp","T2 1sp","Phi 1"

END SELECT
END SELECT

Onum_divs=Nmodew-Excras
Max-iters=40
Nmodes=-O

FOR 1=1 TO090
Ks(l)=O.O

NEXT I

Nn= 1
REPEAT

X=MIN(O.9999*K 1,.99999*K2)
Kappal1=SQR(KI1A2-XA2)
Kappa2=SQR(K2A2-XA2)
Kappa2s=SQR(K2SA2-XA2)
Phase=-2*Nn*PI-R Iphase

IF Kind$=" pp" THEN
Fs=2*H*KappalI+2*T*Kappa2-~Phase

ELSE
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IF Kind$=--" ss" THEN

Fs=2*H~* Kappa 1 +2*T*Kappa2s-Phase
ELSE

Fs=2*H* KappalI +T* (Kappa2+Kappa2s)-Phase
END IF

ENDIEF

Nn=Nn+1
UNTIL Fs<0 OR Nn>=90

Nstart=Nn- 1
N=Nstart
Stepslow= I
Rootsave= 10000

IF Kind$=" pp"THEN
Tst=2*H*K I+2"'T*K2

ELSE
IF Kind$=" ss" THEN

Tst=2*H*K 1+2*T*K2s
ELSE

Tst=2*H*K I+T*'(K2+K2s)
END IF

END IF

FOR Stepslow=Stepslow TO Nmodew+ 1-Extras
IF Stepslow=l THEN

Kstart=Kw(Stepslow+Extras)
Ksjpl =MIN(0.9999*K1 ,0.99999*K2)

ELSE
IF Stepslow<Nmodew+ 1-Extras THEN

Kstar=Kw(Stepslow+Extras)
Ks-ip 1 =Kstart=-Kw(Stepslow- 1 +Extras)

ELSE
Kscar=1 .E-4
Ksjip 1 =Kw(Stepslow- 1 +Extras)

END IF
END EF

Num-divs=INT(Onum...divs*( I +Stepslow/(Nmodew+1 ))/Freq*0. 1))
Kstep=(Ks_ip -Kstart)/Num-dsivs

FOR L--l TO Num-divs
Nurr~iters=0
Phase=2*N*PI-R lphase
If Tst<Phase THEN Sub-sed-end
Ksjip I =Kstart-i(L- I )*Kstep

REPEAT
Ks-i=Ksip 1
Kappa1l=SQR(KjA2-KS iA2)
Kappa2=SQDR(K2A2-Ks iA2)
Kappa2s=SQR(K2SA2-KSJiA2)
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Sign 1=SGN(K1A2-KS_iA2)
Sign2=SGN(K2A2-.Ks_iA2)
Sign2s=SGN(K2SA2-Ks- iA2)

IF Kind$=" pp" THEN
Fs=2*H* Kappa I *Sign 1 +2*T*Kappa2*Sign2-Phase
Fsprime=-2*Ks i*(IH/(Kappa 1 *Sign 1 )+T/(Kappa2*Sign2))

ELSE
IF Kind$=" ss" THEN

Fs=2*H*Kappa 1 *Sign 1 +2*T*Kappa2s*Sign2s-Phase
ELEFsprime-~2*Ks-i*(H/(Kappa 1 *Sign 1 )+T/(Kappa2s*Sign2s))

Fs=2*H*Kappal1+T*(Kappa2*Sign2+Kappa2s*Sign2s)-Phase
Fsprime=-Ks...i*(2*H/(Kappa1 *Sign 1 )+T/(Kappa2*Sign2)

END IF+T/(Kappa2s*Sign2s))
ENDDEF

IF ABS(Fs)>10000 THEN Nxtl

Ksjip 1 =Ks-i-Fs/Fspnime
IF Ksjip IRoosave THEN Ks-ipI=Rootsave
Num-iters=Num-iters+1

UNTIL ABS(Fs)<=1.E-4 OR Numfiters>=Max_iters

IF Num-iters>=Max-iters THEN
PRINT "Max iterations"

ELEIF Ksjipl1>MIN(O.9999*Kl1,O.99999*K2) THEN Nxtl
M=N-Nstart+ 1
Ks(M)=Ksip 1
Rootsave=Ks-ipi

FOR Mm=1 TO Nmodes
Testy=ABS(Ks(M)-Ks(Mm))
IF Testy<O.OOOO1 THEN NxtI

NEXT Mm

Nmodes=Nmodes+ 1
IF Nmodes=1 THEN PRINT

Phil =ATN(Kappal/Ks(M))
Phi2=ATN(Kappa2/Ks(M))
Rng=T/SIN(Phi2)
D=Rho 1/Rho2
P=Kappa2/Kappal
Z12=D*P
Z23-=(Rho2/Rho3)*(Kappa3fKappa2)
Ri 211ABS(( -Z 12)(1 +Z 12))
R2311=ABS((1 -Z23)/I +Z23))

SELECTr Type$
CASE 41119
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Auten= lOA(-2*Rng*Freq*Afa2/1OOO)
S=Atten*( 1-R12l1A2)*R23lI
PRINT USING Frmtl1;Ks(M),MEs(M),Atten,R 1211,R2311,Phi 1

CASE "lrn"
Atten= 1OA(-2*Rng*Freq*Alfa2/1OOO)
S=Atten*( 1-R12llA2)*R231
MagC=R1 *S*(l1+R 1*R1211+R 1A2*R 1211A2)*( 1-R12l*R23ll*Atten+

Ri 211A2*R23jjA2*AttenA2)
PRINT USING Frmtl1;Ks(M),M,Es(M),Atten,R 1211,R2311,Phi 1

CASE "lee"
SELECT' Kind$
Phi3=ATN(Kappa3/Ks(M))
Phi2s=ATN(Kappa2sfKs(M))
Phi3s=ATN(Kappa3s/Ks(M))
Rngs=T/SIN(Phi2s)
B 12=1 -(SIN(2*Phi2S))A2*( 1-Kappa2lKappa2s)
Rl2le=(-Z12+B12)/(Z12+B 12)

T12=2*D*COS(2*Phi2s)/(Z1 2+B 12)
T21=2*P*COS(2*Phi2s)/(Z12+B 12)
T12ps=-4*D*(CQS(Phi2s)A2)*TAN(Phi2)/(Z12+B 12)
T21sp=-4*P*(COS(Phi2S)A2)*TAN(Phi2s)/(Z12+B 12)

R2 lden=SIN(Phi 1 )*((C2/C2s)*COS(2*Phi2S)A2+SIN(2*Phi2)*
SIN(2*Phi2s)*(C2s/C2))+(C2*C1 *Rho. I *SIN(Phi2))/(C2s*C2*Rho2)

R.2 1=((SIN(Phil1)* ((C2/C2s)*COS(2*Phi2S)A2-SIN(2*Phi2)*
SIN(2*Phi2s)*(C2s/C2))-(C2*C I *Rho 1 *SIN(Phi2))/
(C2s*C2*Rho2)))/R2 I den

R2 1ss=((SIN(Phil1)*((C2/Cs)*CQ5(2*Phj2S)A25SIN(2*Phi2)*
SIN(2*Phi2s)* (C2sIC2))+(C2*C 1 *Rho 1 *SIN(Phi2))/
(C2s*C2*Rho2)))/R2 iden

R2 ips- 2*SQR(SIN(2*Phi2)*SIN(2*Phi2s))*COS(2*Phi2s)*SLN(Phil1)*
SIN(2*Phi2)/SIN(2*Phi2s))*(C2s/C2)/R2 1 den

R21Isp- ~2*SQR(SIN(2*Phi2)*SIN(2*Phi2s))*CQS(2*Phi2s)*SIN(Phi1 )*
SIN(2*Phi2s)/SIN(2*Phi2))*(C2/C2s)/R2 1 den

Tan2=Kappa2/Ks(M)
Tan3=Kappa3/Ks(M)
Tan2s=Kappa2s/Ks(M)
Tan3s=Kappa3s/Ks(M)
Mu2s=Rho2*C2SA2
Mu3s=Rho3*C3SA2

P1=(2*Mu2s+Mu3s*(Tan3SA2-1 ))*Tan2*Tan2s
P2=(Mu2s*(Tan2sA2-I )-Mu3s*(Tan3sA2-1))*Tan2
P3=(2*Mu3s+Mu2s*(Tan2SA2-1 ))*Tan3*Tan2s
P4--2*(Mu3s-Mu2s)*Tan3*Tan2*Tan2s

Q 1=2*(Mu2s-Mu3s)IITan3*Tan2*Tan2s
Q2=(2*Mu3s+Mu2s*(Tan2SA2-1 ))*Tan3s*Tan2
Q3((M I TnSA-))+(Mu3s*(Tan3sA2-1I)))*Tan2s
Q4=-P1
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Denomin=((P1 +P3)*(Q2+Q4)-(P2+P4)*(Q1I+Q3))
R23pp=(((P1-P3)*(Q2+Q4)-(P2+P4)*(Q 1-Q3))fDenomin)
R23ss=(((P2-P4)*(Q1 +Q3)-(P 1+P3)*(Q2-Q4))fDenomnin)
R23sp=(2*(P3*Q1-P1 *Q3)/Denoymn)
R23ps=(2*(P4*Q2-P2*Q4)fDenomifl)

CASE " pp"l
Coefs=R1 *R3*T12*l
Atten= 10A(-2*Alfa2*Freq*Rng/10000)
Es(M)=LOG(ABS(Coefs*Atten))/(2*Ks(M)*(H/Kappa1 +T/Kappa2))
PRINT USING Frmt2;Ks(M),M,Es(M),Atten,R23,T12,T21,Phil

CASE " ss"
Coefs=R1 *R23ss*Tl2ps*T21 sp
Attex= 10/l(-2*Alfa2s*Freq*Rngs/10000)
Es(M)=LOG(ABS(Coefs*Atten))/(2*Ks(M)* (H/Kappal +TfKappa2s))
PRINT USING Frrnt2;Ks(M),M,Es(M),Atten,R23ss,TL 2ps,T2 1sp,Phi 1

CASE " sp"
Coefs=R I *R23sp*T I 2ps*T2 1
Atten= 1 0%'((Alfa2*Rng+Alfa2s*Rngs)*Freq/1 0000)
Es(M)=LOG(ABS(Coefs*Atten))/(Ks(M)*(H/Kappa1 +TIKappa2+

TlKappa2s))
PRINT USING FrmT2;Ks(M),M,Es(M),Atten,R23spT 2psT2 1,Phi 1

CASE " ps"
Coefs=Rl *R23ps*T12*'flIsp
Atten= 10((Alfa2*Rng+Alfa2s*Rngs)*Freqf 10000)
Es(M)=LOG(ABS(Coefs*Auen))/(Ks(M)*(IVIKappa1 +TIKappa2+

TlKappa2s))
PRINT USING Frmt2.; s(M),M,Es(M),Atten,R23ps,T 12,T2 1sp,Phi I

END SELECT
END SELECT

N=N+1
END IF

NxtI:!
NEXT L

NEXT Stepsiow
PRINT
Sub-sect-end:!
SUBEND

--------------------------------------------------------------------------------

SUB Exact(Kn(*),En(*),Kw(*),Ew(*),Nmodel,Nmodew,Nmodes,Type$,Sym$,Exw,
S$,OPTIONAL INTEGER Diffcase)

Frmtl :IMAGE 3X,4A,2D,4A,SD.4DE,4X,4A,2D,4A,SD.4DE,2X,2D.D
Frmt2:IMAGE 3X,4A,2D,4A,SD.4DE,4X,4A,2D,4A,SD.4DE,3X,2D.2D,2X,2D.

2 D,
3X,3D.D

Frmt3: IMAGE 2X,3D.2D,3X,2D.2D,3X,2D.2D,3X,3D.2D,2X,2D.2D,3X,2D,2D,3X,
2D.2D,4X,2D .2D,2X,3D.2D
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COM /Parameterl/ Cl, C2, Rhol, Rho2, H, T, Freq, Alfa2, Ri, Riphase
COM /Parameter2/ C2s, C3, C3s, Rho3, Alfa2s
COM fWavenumber/ W, KI, K2, K2s, K3s

ITEGER 1, L, M, N, Num-iters, Max-iters, Num-divs, Stepsiow

DIM Wi(2,1), Wipl(2,I), F(2,1), J(2,2), Jinv(2,2)

PRINT
PRINT TA.B( 19);"EXACT ";Type$;"SOLNS";Sym$
PRINT

Max-iters=100
Wipl1(1,l1)=O
Wipl(2,1)=O
Nrnodeni=O
Stepslow= 1
Onum-divs=Nmodes/1 .2

FOR 1=1 TO090
Kn(l)=-O
En(I)=-O

NEXT I

FOR Stepslow=Stepslow TO Nmodes+l
SELECT Type$
CASE "Ill"
IF Stepslow=1 THEN

Kstart=(Kw(Stepslow+Extras)+Ks(Stepslow+Extras))/2
Estart=(Ew(Stepslow+Extras)+Es(StepslowIExtras))/2
Knext=MIN(O.9999*K 1,O.99999*K2)

ELSE
IF Stepslow<Nmodes+l THEN

Kstart=(Kw(Stepslow+Extras)+Ks(Stepslow+Extras))/2
Estart=(Ew(Stepslow+Extras)+Es(Stepslow+Extras))/20 0

Knext=Ks(Stepslow-1)
ELSE

Kstar=l .E-4
Estart=(Ew(Stepslow+Extras)+Es(Stepslow+Extras))/200
Knext=Ks(Stepslow-l)

END IF
END IF
CASE "lee"
IF Stepslow=l THEN

Kstart=(Kw(Stepslow+Extras)+Ks(Stepslow+Extras))/2
Estart=(Ew(Stepslow+Extras)4-Es(Stepslow+Extras))t2
Knext=MIN(O.9999*K I,.99999*K2)

ELSE
IF Stepslow<Nmodes+l THEN

Kstart=(Kw(Stepslow+Extras)+Ks(Stepslow+Extras))/2
Estart=(Ew(Stepslow+Extras)+Es(Stepslow+Extras))/2
Knext=Ks(Stepslow-1)

ELSE
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Kstart= 1.E-4
Estart=(Ew(S tepslow+Extras)+Es(Stepslow+Extras))Z
Knext=Ks(Stepslow-l)

END IF
END IF
END SELECT

PRINT
Num_divs=INT(Onumdivs* (1+2* Stepsiow/(Nmodes+ 1)))
Kstep=(Knext-Kstart)/Numdivs

FOR L=1I TO Num-divs
Num-iters=0O
Wip 1(1,1 )=Kstrn+(L- 1)*Kstep
Wip 1 (2, 1)=Estart
IF Wipl(1,1)c'.O THEN

REPEAT
MAT Wi= Wip I
GOSUB Function
IF ABS(F(l,1))>I00 OR ABS(F(2,l))>100 THEN Nexti
GOSUB Jacobian
MAT Wipl= Jinv*F

IF Diffcase=1 THEN
MAT WiplI= Wipl/(1.0)

ELSE
MAT WiplI= Wiplf(I.2)

END IF

MAT Wipl= Wi-Wipi
Num-iters=Num-iters+ 1

FOR I=I TO Nmoden
Test2=AJ3S(Kn(I)-Wip 1(1,1))
IF Test2<c=0.0001 THEN Nexti

NEXT I

IF ABS(Wipl(1,1))>1.E+5 THEN Nexti
IF ABS(Wipl(2,1))>l.E+5 THEN Nexti
F1=ABS(F(l,l))
F2=ABS(F(2, 1))

UNTIL FI<=1.E-4 AND F2<1.E-4 OR Num-iters>=Max-iters

IF Numjrters>=Maxjters THEN
PRINT "Max Iterations"

ELSE
IF Wipl1(1, 1)<O THEN Nexti
IF PhilI <0 Then Nextl
Nmoden+Nmoden+ I
M=Nnioden
Kn(M)=WipI(l,l)
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En(M)=Wip 1(2,1)

SELECT Type$
CASE "Ill"

PRINT USING Frmt2;"Kn(",M,") = ",Kn(M),"En(",M,") = ",En(M),
R 1211, R2311,Phi I *180/PI

CASE "lee"
PRINT USING Frrnt ;"KnlIC',M,") =",Kn(M),"En I(",M,")=

En(M),Phi 1 * 1 80/PI
END SELECT
IF Nmoden=lI THEN Nexti
GOTO Nextss

END IF
END IF

Nexti:!
NEXT L

Nextss:!
NEXT Stepsiow
GOTO Sub_ex-end

Function:!

Krn=Wi(1,1)
Em=Wi(2, 1)
IF Kmn=O THEN Nexti

Kappal1=SQR(KI1A2-KmA2)
Kappa2=SQR(K2A2-KMA2)
Kappa2S=SQR(K2SA2-KMA2)
SignlI=SGN(KI1A2...KMA2)
Sigr.2=SGN(K2A2-KMA2)
Sign2s=SGN(K2SA2-KMA2)

IF ABS(Km)>=ABS(K3) THEN
Kappa3=-O

ELSE
Kappa3=SQR(K3A2-KMA2)

END IF

KappalI=Kappa 1 *Sign~ I
Kappa2=Kappa2*Sign2
Kappa2s=Kappa2s*'Sign2s

Phi 1=ATN(Kappal/Km)
Phi2=ATN(Kappa2lKm)
Rng=TISIN(Phi2)
D=Rho IIRho2
P=Kappa2/Kappa 1
ZI 2=D*P
Z23=(Rho2fRho3)*(Kappa3fKappa2)
RI 211=ABS(( 1-ZI 2)1(1 +Z12))
R23li=ABS(( 1-Z23)/( 1+Z23))
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Aa=2* Kappa 1 *H+R 1 phase
Bb=2*Kappa2*T
Ab=Aa+Bb
Saa=SIN(Aa)
Sab=SIN(Ab)
Caa-=COS(Aa)
Cab-=COS(Ab)

G=Km*Em
G 1=HIKappal
G2=T/Kappa2
G12=G1+G2
Gf=2*G*G1
Fact 1=-2*Km*G 1
Fact2=-2*Kxn*G2
Fact 12=Factl -sFact2
Ex2=-~T*G/Kappa2
Ex4=2*Ex2
IF ABS(Ex4)>1O OR ABS(Gf)>1O THEN Nexti

Y 1=Kni/Kappal
Y 2=Knx/Kappa.2
Y=1+Y1A2
Y4= 1+Y2A2

B I1=-2*Alfa2*Rng*Freq/1OOO
Fg=G I *EXP(Gf)

SELECT Type$
CASE "W"1

S=1OA(Bl1)*( 1-R 1211A2)*R2311*EXP(Ex4)
S2=R 1211*R2311* 1OA(Bl1)*EXPJ(Ex4)
Den=l1+S2A2+2*S2*COS(Bb)
F(l 1)=R 1211*Saa+S*(Sab+Saa*S2)/Den
F(2, 1)=EXP(Gf)-R 12l1*Caa-R 1*S*(Cab+S2*Ca)/Den

CASE "lee"
EF ABS(Km)>=ABS(K3s) THEN

Kappa3s=-O
ELSE

Kappa3s=SQR(K3sA2-KMA2)
END IF
Phi3=ATN(Kappa3/Km)
Phi2s=ATN(Kappa2s/Km)
Phi3s=ATN(Kappa.Is/Km)
Rngs=T/SIN(Phi2s)

Cc=2*Kappa2s*T
Dd=Kappa2*T+Kappa2s*T
Ac=Aa+Cc
Sac=SIN(Ac)
Sad=SIN(Ad)
Cac=COS(Ac)
Cad--COS(Ad)
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G2s=TlKappa2s
Gl2s=GI+G2s
Gs=2*G 1+02+G2s
Ex2s=-~T*GfKappa2s
Ex4s=2*Ex2s
Ex=Ex2+Ex2s
Y2s=Kml/Kappa2s
Y4s= 1 +Y2SA2

Cc I -2*Alfa2s*Rngs*Freq/1OOO
Dl I =(Alfa2*Rng+Alfa2s*Rngs)*Freq/1 0000
B 12= 1-(SIN(2*Phi2s))A2*( 1-Kappa2/Kappa2s)
R 121e=(-zl 2+B 1 2)/(zlI2+B 12)

Ti 2=2*D*COS(2*Phi2s)f(Z1I2+B 12)
T21 =2*P*CQS(2*Phi2s)/(Z12+B 12)
TI 2ps=-4*D*(COS(Phi2s)A2)*TAN(Phi2)/(Z 1 2+B 12)
T2 1sp=-~4*P* (CQS(Ph i2S)A2)*TAN(Ph i2s)/(Z 12+B 12)

R2 1den=SIN(Phil1)*((C2/C2s)*COS(2*Ph i2S)A2+SIN(2* Phi2)*SIN(2*Phi2s)*
(C2sIC2))+(C2*C I *Rhol *SN(Phi2))/(Cs*C*Rho2)

R2 1 =((SIN(Phi 1 )*((C/C2s)* COS(2* Ph2S)A2-IN(2*Phi2)*SIN(2*Phi2s)*
(C2s/C2)).-(C2*C I *Rho 1 *SIN(Ph j2))/(C2s*C2*Rho2)))/R2 iden

R2 1ss=((SIN(Phil1)*((C2/C2s)*CQS(2 *Phi2S)A2-SIN(2*Phi2)*SIN(2*Phi2s)*
(C2s/C2))+(C2*C l * Rho 1 *SIN(ph j2))/(C2s*C2*Rho2)))/R2 iden

Tan2=Kappa2/Kni
Tan3=Kappa3lKni
Tan2s=Kappa2s/Km
Tan3s=Kappa3sfKrn
Mu2s=Rho2*C2SA2
Mu3s=Rho3*C3SA2

P1 =(2*Mu2s+Mu3s*(Tan3SA2-1 ))*Tan2*Tan2s
P2=(Mu2s*(Tan2sA2-1 )-Mu3s*(Tan3SA2-1))*Tan2
P3=(2*Mu3s+sMu2s*(Tan2SA2-1 ))*Tan3*Tan2s
P4--2* (Mu3s-Mu2s)*Tan3*Tan2*Tan2s

QI =2*(Mu2s-Mu3s)*Tan3*Tan2*Tan2s
Q2=(2*Mu3s+Mu2s*(Tan2SA2-I ))*Tan3s*Tan2
Q3=((-Mu2s*(Tan2SA2-1 ))+(Mu3s*(Tan3SA2-1 )))*Tan2s
Q4=Pl

Denomin=((PI +P3)*(Q2+Q4)-(P2+P4)*(QI+Q3))
R23pp=(((PI-P3)*(Q2+Q4)-(P2+P4)*(Ql1-Q3))/Denonxn)
R23ss=(((P2-P4)*(Q1 +Q3)-(P1+P3)*(Q2-Q4))IDenornin)
R23sp=(2*(P3*Q1-P1 *Q3)/Denornin)
R23ps=(2*(P4*Q2-P2*Q4)/Denomin)

AuuABS(R1*Rl2le)
Pt-ABS(R 1*R23fl12*171)
C=ABS(R1 *R23ss*Tl2ps*T2 isp)



74
D=ABS(Rl1*R23sp*Tl2ps*T21)
E=ABS(RI *R23ps*T12*T7 I sp)

B2= 1 A(BlI)*E)(P(Ex4)
Cc2= 1O'(Ccl1)*EXP(Ex4s)
D2= 10OA(Dl1)*EXP(Ex)

Pp=R2 I *R23* 1 OA(B I )*EXP(Ex4)
Ss=R21Iss*R23ss* I OA(CC 1 )*EXP(Ex4s)

Deno I = 1 2*Pp*COS(Bb)-PpA2
Deno2=1-2*Ss*COS(Cc)-SSA2

Fl wat=A*EXP(-Gf)*Saa
Fl sed=(B* 1OA(B 1 )/Deno I )*(EXP(-2*G*G 12)*Sab-Pp*EXP(-Gf)*Saa)
Fl sedsp=(D*' 1OA(D 1 )fDenol )* (EXP(-G*Gs)*Sad-Pp*EXP(-G*(2*Gl1+G2s-

G2))*SIN(Aa+CcI2-Bb/2))
FlI sedss=(C* lO'A(Cc 1 )fDeno2)*(EXP(-2*G*G 1 2s)*Sac-Ss*EXP(-GfO*SIN(Aa))
FlIsedps=(E* 1 OA(El1)IDeno2)*(EXP(-.G*Gs)*Sad-S s*EXP(-G*(2*G 1-

G2s+G2))*SIN(Aa-Cc/2+Bb/2))

F2wat=A*Caa
F2sed=(B* 1 O'(B I )/Denol1)*(EXP(-2*G*G 12)*Cab-~Pp*EXP(-Gf)*Caa)
Fl1sedsp=(D* I O(DlI)/DenolI)*(EXP(.JJ*Gs)*CJad-Pp*E)CP(...G*(2*G 1+G2s-

G2))*COS(Aa.iCc/2-Bb/2))
Fl sedss=(C* IO'A(Cc 1 )/Deno2)*(EXP(-2*G*Gl12s)*Cac-Ss*EXP(-Gf)*

COS(Aa))
Fl1 sedps=(E* I OA\El1)/Deno2)*(EXP(-.G*Gs)*Cad-Ss*EXP(-G*(2*G I-

G2s+G2))*CQS(Aa-Cc/2+BbI2))

F(l 1)=F I wat+FI sed+FI sedss+F I sedsp+F1 sedps
F(2, 1 )= l-F2wat*EXP(-Gf)-F 1 sed-F 1 seds s-Fl sedsp-F I sedps

END SELECT
RETURN

Jacobian:!

SELECT Type$
CASE "IW"

J( 1,1 )=Fact 1 *R 1 211*Caa+S *(EXP(E)C4)*(Cab* (Fact I +Fact2}-Sab*2*Em*Y4))
J( 1,2)=S*EXP(Ex4)*Sab*Fact2
J(2, 1)=EXP(Gf)*2*Em*G 1*Y R1 *R 1211*Saa*Factl +R1 *S*EXJP(Ex4)*

(Cab*2*Em*G2*Y4+Sab*(Factl1+Fact2))
J(2,2)=-EXP(Gf)*Fact 1-RI *S*EXP(Ex4)*Cab*Faca2

CASE'4lee"
Fact2s=-2*Kzn*G2s
Fact 12=Fact 1 +Fact2
Fact I 2s=Fact I+Fact2s
Dfact=EXP(-G*Gs)*(FactlI-sFact2I2+Fact2s/2)
1(l,1l)-A*EXP(-Gf)*Caa*FactlI+B* 10&(BlI)*(EXP(-2*G*G 12)*Cab*Factl12-

PpEP-G Ca*at)/Denol +C* 1Ol(Ccl1)*(EXP(...2*G*Gl2s)*Cc*
Fact12-Ss*EXP(-GfO*Caa*Factl)IDeno2+D* 1OA(D 1)*Dfac*Ca-Pp*

EXP(-G*(2*G I+G2s-G2))*COS(Aa+Cc/2-Bb/2)*(Fact1 +Fact2s/2-



75
Fact2/2)))/DenolI+E*',O(Dl1)*(Dfact*CadjSs*EX(-G..f*(2*G 1-G2s+G2))
*COS(Aa-Cc/2+Bb/2)*(Factl-Fact2s2+Fact2/2)))/Delo2

J( 1,2)=A*EXP(-~Gf)*Saa*Fact1 +B* 1O'I(B 1 )*(EXP(..2*G*G 1 2)*Sab*FaCt12-
Pp*EX(J)rJ*Saa*FactlI)fDeno 1 +C* 1O'^(Cc 1 )*(EXP(-2*G*G 1 2s)*Sac*
Fact 1 2-S s*EXP(-GfO*Saa*Factl1)/Deno2+D* 1 ONDl1)*(Dfact*Saj.4pP*
EXP(-G*(2*G 1+G2s-~G2))*SIN(Aa+Cc/2-BbI2)*(Fact1+Fact2s/2-
Fact2/2)))/Denol +E* 1 OA(DlI)*(Dfact*Sad-Ss*EXP(-Gf*(2*G 1-G2s-i-2))
*SIN(Aa..Cc/2+Bba2)*(Fact 1-Fact2st2+Fact2l2)))/Deno2

J(2, 1)=J(1,2)
J(2,2)=-J( 1,1)

END SELECT
MAT Jinv= LNV(J)
RETURN

Sub ex end:!
SUBEND)

SUB Nat-og..e(E(*),Ln..e(*),Nmode)

ITEGER I
FOR I= 1 TO Nmode

Ln....e()=LOG(ABS(E(I)))
NEXT I

SUBEND

SUB Ln-e-vsk-plot(K(*),E(*),Ln..e(*),Nmode,Color,Mark$)

CSIZE 2,4
PEN Color
LORG 5

FOR I=Nmode TO I STEP -1
MOVE K(I),-Ln...e(I)
LABEL Mark$

NEXT I

SUBEND

SUB Incohmt(Kw(*),Ew(*),Ks(* ),Es(*),KJ(*),En(*),Nmodew,Nmodes,Nmoden,
Indbex,Extras)

Formial: IMAGE 4X,56A14D.DX,2A
COM /Wavenumber/ W, KI, K2, K2s, K3s
INTEGER I,R,Z

Z--100
R=10000
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Insumw=O
Insums=O
Insumn=-O

FOR I=Extras+1I TO Nmodew
Kappal1=SQR(KI1A2-KWA2) 

WIA )Incow=((COS(Kappa 1 *Z)*SIN(Kappa 1 *Z)*EXP(-ABS(Ew(I))*R))/Kw() 1 .5)2
lnsumw=lnsumw+Incow

NEXT I

FOR 1=1 TO Nmodes
Kappal1=SQR(K lA2-~KSA2)
Incos=((COS(Kappa 1 *Z)*SIN(Kappa 1 *Z)*EXP(-ABS(Es())*R))Ks(I)AI1.5)A2
Insums=Insums+Incos

NEXT I

FOR 1=1 TO Nmoden
Kappal1=SQR(KI1A2.4jnA2)
Incon=((COS(Kappal *Z)*SIN(Kappal *Z)*EXP(..ABS(En(I))*R))Kil(I)AI1.5)A2
Insumn=Insumn+Incon

NEXT I

Insumall=Insumw+Insums
Indball=1I *LGT(Insumall)
Indbex=1I *LGT(Insumn)

PRINT
PRINT' USING Formatl1;"Incoherent (Water + Sediment) - Incoherent Exacts ",Indball-

Indbex,"dB"

SUBEND

SUB Fouraxes(Color, INTEGER Diffcase)

COM /Parameterl/ C1, C2, Rhol, Rho2, H, T, Freq, Alfa2, R1, Riphase
COM iWavenumber/ W, KI, K2, K2s, K3s

DEG
LORG 5
PEN Color

Kmax=INT(Freq/2)* I .E-2
SELECT Diffcase
CASE I

VIEWPORT 20,65,47,72
CASE 2

VIE WPORT 67,112,47,72
CASE 3

VIEWPORT 67,112,21,46
CASE 4
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VIE WPORT 20,65,21,46

END SELECT

WINDOW 0,Kmax,0,7
AXES 0,2,0,1,1
MOVE 0.05,1
PEN -1
DRAW Kmax, I
PEN Color
CSIZE 3,.4

FOR J=1 TO 10
Ang=COS(10*(J-1))*K1
MOVE Ang,1.25
DRAW Ang,1
IF J=1 THEN

PEN -1
MOVE Ang+Kmax/35,1
DRAW Kmax,1
PEN Color

END IF
IF Diffcase=3 OR Diffcase=4 THEN

IF J=1 THEN
MOVE Ang,.3
LABEL '"

END IF
IF J=4 THEN

MOVE Ang,.3
LABEL "30"

END IF
IF J=7 THEN

MOVE Ang,.3
LABEL "60"

END IF
IF J=10 THEN

MOVE Ang,.3
LABEL "90"

END IF
END IF

NEXT J
SUBEND

SUB Label4axes(Color)

VIEWPORT 0,131,0,100
CSIZE 2.7
LORG 5
DEG

PEN Color
MOVE 31,72
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LABEL "FINE FLUID'
MOVE 75,72
LABEL "MEDIIJN'
MOVE 26,46
LABEL "HARD"
MOVE 84,46
LABEL "SEMICONSOLIDATED"

CSIZE 3
MOVE 62,18
LABEL "GRAZING ANGLE"
LDIR 90
MOVE 9,49
LABEL "-ln(ABS(En))"

LDIR 0
CSIZE 3,.4
MOVE 18,72
LABEL "7"
MOVE 18,51
LABEL "1"*
MOVE 18,46
LABEL "7"
MOVE 18,25
L.ABE-L "1"

SUBEND
-----------------------------------------------------------------------------

SUB Sort(K(*),E(*),Nmode)

INTEGER 1, N
FOR N=1 TO Nmode-1

FOR I=N+s1 TO Ninode
IF K(N)>K(1) THEN

Junk=K(N)
K(N)=K(I)
K(I)=Junlc
Dummy=E(N)
E(N)=E(I)
E(I)=Junk

END IF
NEXT I

NEXT N
SUBEND


